Quantifying the contribution of environmental factors to isoprene flux interannual variability

نویسندگان

  • Ahmed B. Tawfik
  • Reto Stöckli
  • Allen Goldstein
  • Shelley Pressley
  • Allison L. Steiner
چکیده

Terrestrial isoprene emissions directly respond to leaf temperature, photosynthetically active radiation (PAR), soil moisture, and plant characteristics such as leaf area index (LAI). Prior work has estimated isoprene interannual variability at 5e25%, however the relative contributions of individual environmental factors have not been delineated. A biogenic isoprene emissions model (MEGAN) is coupled to a regional climate model (RegCM4-CLM) to evaluate variations in monthly isoprene emissions. We use a novel approach to estimate the contribution of environmental factors to monthly averaged isoprene flux variability and analyze regional differences over the contiguous U.S. for summers spanning 1994 e2008. Consistent with earlier studies, isoprene flux varies 8e18% interannually with the greatest variability occurring in July. Yearly changes in isoprene flux are poorly described by any single environmental factor, yet temperature and soil moisture together account for at least 80% of the total isoprene flux variations for all regions during the summer. Soil moisture plays the most significant role in controlling variability over the Northeast and Southeast, but only exceeds temperature in importance during August in the Northeast and July in the Southeast. PAR and LAI are nearly negligible contributors to summer interannual variability. Uncertainty in climate model soil moisture parameterizations can drive large variability in isoprene fluxes when including the isoprene soil moisture dependency factor, suggesting a need for further validation. 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoprene emissions over Asia 1979–2012: impact of climate and land-use changes

Due to the scarcity of observational constraints and the rapidly changing environment in East and Southeast Asia, isoprene emissions predicted by models are expected to bear substantial uncertainties. The aim of this study is to improve upon the existing bottom-up estimates, and to investigate the temporal evolution of the fluxes in Asia over 1979– 2012. To this purpose, we calculate the hourly...

متن کامل

Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space

[1] Formaldehyde (HCHO) columns measured from space by solar UV backscatter allow mapping of reactive hydrocarbon emissions. The principal contributor to these emissions during the growing season is the biogenic hydrocarbon isoprene, which is of great importance for driving regional and global tropospheric chemistry. We present seven years (1995–2001) of HCHO column data for North America from ...

متن کامل

Relationships between photosynthesis and formaldehyde as a probe of isoprene emission

Atmospheric oxidation of isoprene emission from land plants affects radiative forcing of global climate change. There is an urgent need to understand the factors that control isoprene emission variability on large spatiotemporal scales but such direct observations of isoprene emission do not exist. Two readily available global-scale long-term observation-based data sets hold information about s...

متن کامل

Effect of Carex rostrata on seasonal and interannual variability in peatland methane emissions

[1] Peatlands are a large natural source of atmospheric methane (CH4), and the sedgeCarex rostrata plays a critical role in the production, oxidation, and transport of CH4 in these systems. This 4 year clipping experiment examined the changes in CH4 emissions from a temperate peatland after removing all aboveground C. rostrata biomass. Methane fluxes, dissolved CH4, and environmental variables ...

متن کامل

Advances in upscaling of eddy covariance measurements of carbon and water fluxes

[1] Eddy covariance flux towers provide continuous measurements of ecosystem-level net exchange of carbon, water, energy, and other trace gases between land surface and the atmosphere. The upscaling of flux observations from towers to broad regions provides a new and independent approach for quantifying these fluxes over regions, continents, or the globe. The seven contributions of this special...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012